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ABSTRACT 
 

his paper presents a comparative analysis of modeling 
approaches for a high-frequency time series. The 
moving average of 567 morbidity weeks of dengue 
cases in Butuan City, a Highly Urbanized City (HUC), 
was used as the response variable, with the aggregated 

rainfall, mean maximum temperature, mean minimum 
temperature, and mean relative humidity as the set of regressors. 
The last 24 morbidity weeks were set to be used for validation 
of predictive accuracy. 
 
Some pieces of literature support the robustness of the use of 
Bayesian methods in drawing inferences, modeling, and 
predicting epidemiological data. Hence, candidate Bayesian 
Econometric models were applied following appropriate 
assumptions. The applicability of Bayesian Vector 
Autoregression (BVAR) for variable selection and lag inclusion  

 
 
purposes was empirically supported. The BVAR results show 
that the dependent variable was mostly sensitive only to the 
variabilities in both the (a) direct effects and (b) lags of the cases 
themselves, and rainfall. The generated lags as included 
regressors were used in a separate model using the Bayesian 
Metropolis-Hastings (BMH) Algorithm. For comparison, a 
Frequentist Vector Autoregression (FVAR) Model as the 
baseline model, and BMH Algorithm were applied, too. 
Predictions comparison shows that the variable and lag selection 
process of BVAR combined with the BMH Algorithm (BVAR-
BMH) simulation resulted in promising gains in predictive 
accuracy against straightforwardly using FVAR, BVAR, or 
BMH algorithm for the original set of variables. The promising 
gains in predictive accuracy may be used in anticipatory actions 
for dengue epidemiological surveillance for the specified HUC, 
or other locations. 
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INTRODUCTION 
 
Among vector-borne infectious diseases, dengue is one of the 
fastest spreading (Leung et al. 2023). Dengue epidemics 
frequently overwhelm the health system and cause massive 
morbidity and mortality in endemic populations in the absence 
of an effective early warning system. Globally, numerous 
applications of predictive models have been published. The 
summarized review by Leung et al. (2023), among others, shows 
that in modeling dengue outbreaks, (1) climate parameters were 
combined with climate change factors, (2) only a few of the 
models accounted for reporting time lags, (3) most predictive 
models applied machine learning algorithms, (4) some used 
regression-based approaches, (5) others used time 
series/autoregressive models, and (6) some models did not have 
validation reports or the metrics to measure the performance of 
the applied models or algorithms are insufficient. These findings 
provide channels for developing novel frameworks for 
predictive modeling for dengue using environmental factors 
given the potential and known effects of climate change. 
 
In a review published by Brady et al. (2015) with multiple papers 
and reports by the World Health Organization (WHO), they 
summarized that disease outbreaks frequently spread rapidly, are 
difficult to predict, and impose a tremendous burden on society 
due to a dearth of response capabilities (Garg et al. 2008; Grais 
et al. 2007; Najera 1999; WHO 2014). Due to the apparent 
impacts of disease outbreaks on broader control efforts, research 
agendas and subsequent policy guidelines have heavily 
emphasized methods to predict outbreaks (early warning), to 
identify these while they are occurring (early detection), to 
respond appropriately to these (outbreak response protocols), 
and to better plan for future outbreak occurrences such as 
effective healthcare, surveillance, and control resource 
allocation among others (WHO 2009; WHO 2005; WHO 1999; 
Farrar et al. 2007; Hutwagner et al. 2003). 
 
Objectives of the study 
Primarily, this paper would aim to contribute to the literature by 
producing a calibrated prediction model for epidemiologic data. 
It will be done by using a combination of predictive models with 
regressors that will be identified as contributory to the spread of 
dengue in the selected study setting. Moreover, while there are 
other socioeconomic and behavioral factors, among others, that 
may have effects on the spread of dengue, the study will focus 
on using meteorological parameters and their lags. The paper, 
thus, may also contribute to the body of knowledge about the 
potential impacts of the variabilities in the meteorological 
parameters on a smaller geographical aggregate on the spread of 
communicable diseases at present and in the long run, 
particularly vector-borne. This may be beneficial to the local 
government of concern given that an effective predictive model 
for dengue is critical for surveillance, and cost-efficient 
anticipatory plans of action, especially for developing countries.  
  
Meteorological parameters and uncertain impacts on the 
spread of dengue 
The study will use local meteorological parameters as the initial 
set of regressors to gain insights into the spatiotemporal effects 
of the local climate on a granular geographical location. The 
paper of Murray, Quam, and Wilder-Smith (2013) summarizes 
that it is scientifically acknowledged that temperature affects 
adult vector survival, virus replication, and infectious period 
durations (Wilder-Smith and Gubler 2008; Reiter 2001; Gubler 
et al, 2001; Patz 2001). The extent to which the spread of Aedes 
mosquitoes is influenced by the environment, climate, or 
meteorological factors may provide useful data for predictive 
models. It has been demonstrated that the weather can predict 
dengue activity (Patz 2001; Earnest, Tan, and Wilder-Smith 
2011; Wu et al. 2007; Hii et al. 2009). The Intergovernmental 

Panel on Climate Change (IPCC) predicts an increase in global 
mean temperatures (IPCC 2007), too. This could create climatic 
and environmental conditions conducive to the spread of Aedes 
species into regions where they are not endemic. Aedes aegypti 
and Aedes albopictus could become established or reestablished 
soon due to the climatic suitability of numerous non-endemic 
regions and their climatic similarity to endemic regions (Reiter 
2010). 
  
Murray, Quam, and Wilder-Smith (2013) added that the rise in 
global temperature over the past four decades is associated with 
an increase in the probability of dengue outbreaks (Banu et al. 
2011). Some research on climate change and dengue suggests an 
increase in transmission due to climate change-induced 
increases in temperature, humidity, and rainfall (Hii et al. 2009; 
Souza, Silva, and Silva 2010; Hales et al. 2002). This lends 
credence to the theory that observable environmental changes, 
such as an increase in global average temperature and humidity, 
increase the likelihood of dengue outbreaks (Russel et al. 2009; 
Van Kleef, Bambrick, and Hales 2011). Temperature increases 
may result in increased vector survival and/or migration into 
regions outside the tropics that were formerly vector-free (Hales 
et al. 2002).   
  
Inclusion of the effects of lags 
The lags of climatic variables on the incidence of dengue could 
be explained by climatic factors that indirectly influence the 
incidence of dengue (Naish et al. 2014). This is due to their 
influence on the dynamics of the life cycle of both vectors and 
viruses. This results in a cumulative time lag, commencing with 
mosquito hatching, larval and pupal development, adult 
emergence and virus amplification, human incubation, and a 
dengue outbreak (Gharbi et al. 2011; McMichael et al. 1996). 
The lag between climate data and incidence data varies 
according to the lag between the biological cycle or mosquito 
life stage and clinical symptoms (Naish et al. 2014). Literature 
suggests that the lag will be shorter for minimum temperatures 
typically associated with adult mosquito mortality and 
prolonged for high relative humidity, both of which are 
associated with adult survival and hatching (Naish et al. 2014). 
This study demonstrates that the same holds for the delays in the 
minimum temperature at 2 weeks, whereas the effects of relative 
humidity and its lags are not significant at all. On the other hand, 
this study is generally consistent with the notion that the average 
temperature is implicated in all biological cycles of Aedes 
aegypti that influence the incidence of dengue fever more slowly 
(CDC n. d.; Gharbi et al. 2011; Dhiman et al. 2011). This study 
also contributes to the literature on the effects of temperature as 
evidence was discovered supporting the benefits of separating 
maximum temperature, minimum temperature, and their delays 
as factors in modeling dengue-confirmed cases. Moreover, the 
inclusion of lags, analysis of extreme climatic events, 
distinctions between seasonal and long-term trends, nonlinear 
effects, and threshold effects in the associations are highly 
recommended by Naish et al. (2014) for better decision-making 
leading to policies related to dengue. 
 
Additionally, the selection of a base period for climate data is 
essential. In the same location, the relationship between climate 
and dengue can vary considerably between decades (Naish et al. 
(2014). Variations may be attributable to alterations in 
socioeconomics, demography, and urbanization. This study 
concurs with the recommendation that long-term climate 
baseline data be used to calculate a mean that is unaffected by 
climate variability when modeling climate-based diseases 
(Wilder-Simith and Gubler 2008; Hales et al. 2002). However, 
limitations in collected data specifically in the number of cases 
are a prevalent concern in the Philippines. Thus, the longest time 
series of available data is often used for spatiotemporal 
modeling. 
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MATERIALS and METHODS  
 
Study Setting 
This study focuses on Butuan City. Particularly, the aggregated 
dengue cases in the city are the targeted data to be studied.  The 
city is categorized as a Highly Urbanized City (HUC). An HUC, 
as also disseminated by the Department of Health (DOH), 
requires a minimum population of 200,000 and an income that 
is at least 50 million Philippine pesos, which is around US 
$938,000 at the current exchange rate based on the 1991 constant 
price (DOH, n. d.). According to the May 2020 Census of 
Population and Housing of the Philippine Statistics Authority, 
the city has a population of 372,910 (PSA 2021).  Figure 1 shows 
the location of the selected study setting. 
 

 
Figure 1: Map of the location of Butuan City 

The (1) availability of high-frequency data as an alternative to 
using the recommended long time series data of reported dengue 
cases as well as the (2) common factors related to globalization, 
including travel and trade, patterns of modern human habitation, 
and vector-favorable climatic conditions (Wilder-Smith and 
Gubler 2008;  Badurdeen et al. 2013), and (3) increased mobility 
of both the vector and human populations that may be the most 
crucial factor in explaining the recent rise in dengue 
transmission conditions in the modern era (Wilder-Smith and 
Gubler 2008; Badurdeen et al. 2013) are the major reasons on 
why the location has deemed a match as the study area. The city 
is densely populated and has an airport, and seaports, among 
others. It is also the regional center for commerce, industry, and 
government in the Caraga Region and a strategic trading hub due 
to its connectivity to other major cities (City Government of 
Butuan 2022). The mobility of vector and human populations 
makes Butuan City as an HUC a good candidate as a study area. 
The city also has a Philippine Atmospheric, Geophysical and 
Astronomical Services Administration (PAGASA) local 
weather station. Thus, local weather parameters, as supported by 
the literature as variables that can be used as predictors, can be 
collected, and used as regressors for the dengue cases of the city. 
 
Data and Sources 
The latest available daily data that was requested from the DOH 
Epidemiology Bureau through the Electronic Freedom of 
Information domain was from January 1, 2010, to December 31, 
2020. The data covers until 2020 only to exclude the possibility 
of an underestimated number of cases due to the effects of the 
COVID-19 pandemic. The data was converted into weekly 
aggregates. To account for potential delayed reporting caused by 
holidays, suspensions of work, and other deterrents, a four-week 
moving average of the cases was used instead. This step was 
done to account for potential reporting biases which may result 
in misinterpretations, false alerts, or delays in the detection of 
outbreaks (Buckingham-Jeffery et al. 2017). In addition, the 
local weather parameters of (1) rainfall aggregate, (2) maximum 
temperature mean, (3) minimum temperature means, and (4) 

relative humidity mean were used as predictors. These weather 
parameters that were requested from the PAGASA, were also 
initially in daily frequency before being adjusted to weekly 
frequency. Consistent with the reported cases, the four-week 
moving averages of the weather parameters were used for 
modeling.  Figure 2 shows the complete time series plots of all 
the variables used in this study. 
 

 
Figure 2: Five-week moving average time series plots of the 
variables used in this study 

In Figure 2, there is a remarkable spike in 2019 in the reported 
cases of dengue. A surge in cases led to the DOH declaring a 
national dengue outbreak back then (ReliefWeb 2019).  On the 
other hand, both total rainfall and mean humidity do not display 
any noticeable pattern whereas the expected seasonality on both 
the mean maximum temperature (Max. Temp.) and the mean 
minimum temperature (Min. Temp.) is observable. 
 
 
METHODS 
 
TBayesian Analysis can be applied in defining and generating 
inferences such as identifying models and parameters (Hobbs 
1997). In the field of economics, Bayesian Econometrics are 
presently being used for prediction and decision analysis aside 
from statistical inferencing (Basturk et al. 2014). Bayesian 
approaches to epidemiologic data analysis are a powerful 
instrument for interpreting study results and evaluating 
hypotheses regarding exposure-disease relationships as well 
(Dunson 2001). In addition, Bayesian methods can predict the 
lag effects, which is crucial in this study that would include lags 
of meteorological parameters, as well as minimizing the 
variance with limited sample points.  
 
In relation, this study would attempt to apply the appropriate 
procedures under Bayesian Econometrics to empirically identify 
the effects of common meteorological parameters on the spread 
of dengue cases in the selected study setting. In particular, the 
paper aims to apply Bayesian Econometrics to generate 
inferences on how the cases of dengue in Butuan City respond 
to the meteorological parameters through the lens of the 
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changing climate. Further, the effects of the lags of the cases and 
in the meteorological parameters shall be accounted for. The 
lags between climate variables and the number of reported 
dengue cases could be explained by climate factors that do not 
directly influence the dengue cases on record (Naish et al. 2014). 
This would also include the effects of the lags caused by the 
developmental stage of the mosquitos as a vector until its full 
development and potential to spread the virus (Gharbi et al. 
2011; Naish et al. 2014). 
 
Procedures 
The 567 total weekly data will be divided into a training set and 
a test set. The first 543 entries will be used as the training set 
while the remaining 24 will be the test set to validate possible 
gains in predictive accuracy. Customary to any econometric 
Simultaneous Equation Models (SEM), all the variables that will 
be entered in the modeling procedure will first be tested for the 
level(s) of stationarity. The appropriate econometric procedure 
under the Bayesian framework will also be dependent on the 
level(s) of stationarity of the variables. Next, an appropriate 
Bayesian econometric model will be applied. Thereafter, 
diagnostic test(s) will be performed to determine the fitness of 
the model given the robustness property of a Bayesian 
framework. One-step-ahead predictions will be generated for 
both the Frequentist and Bayesian econometric models. In hopes 
of assessing if further gains in predictive accuracy could be 
achieved, another Bayesian system that will use the variables 
with lags that are influential to the variations in the response 
variable identified in the initial Bayesian model shall be 
performed. The predictions from the three models will be 
compared using predictive accuracy measures. 
 
Stationarity of the variables 
It is imperative to determine the stationarity of each variable to 
apply the appropriate econometric model, whether under the 
Frequentist or Bayesian approach. Table 1 shows the stationarity 
of the variables. Using the Augmented Dickey-Fuller Test 
proposed by Dickey and Fuller (1979), it was determined that all 
the variables are stationary at level. 
 
Table 1: Results of the Augmented Dickey-Fuller Test.  

Variable p-value for Stationarity  
Test at Level Integration 

Cases  0.01241 𝑰(𝟎) 
Rainfall  <0.0001 𝑰(𝟎) 
Tmax  <0.0001 𝑰(𝟎) 
Tmin <0.0001 𝑰(𝟎) 

Humid 0.0057 𝑰(𝟎) 
 
Based on Table 1, all the variables are stationary at level or 
similarly, integrated of order 0. All the variables are 𝐼(0) in 
other words. Hence, the (Frequentist) Vector Autoregressive 
(VAR) Model is a candidate. However, to apply a more 
probabilistic and simulation-based approach, the application of 
the Bayesian Vector Autoregressive (BVAR) Model is proposed. 
The BVAR framework is also a type of SEM. The study of 
Sugita (2014) states that in theory, in the cases of multivariate 
VAR models, overparameterization may be a cause of concern 
such as inconclusive inference. This could lead to inaccurate 
predictions. Herein, the Bayesian alternative for VAR has 
gained popularity progressively as the prior distributions may be 
constrained. A correctly specified one-step-ahead prediction 
tends to provide more accurate predictions, too for longer 
horizons and more lags added in the model for the BVAR Model, 
as compared to the customary VAR Model (Sugita 2014).  
 
Optimal lags 
Table 2 shows the result of the optimal lag selection of a 
customary VAR system at the 0.05 level of significance for 
easier reproducibility. As Bayesian models would entail a huge 

deal of computational cost during simulations, the maximum 
number of lags was set to 5. Results of the Likelihood Ratio (LR), 
Final Prediction Error (FPE), Akaike Information Criterion 
(AIC), Hanna-Quinn Information Criterion (HQIC), and 
Schwarz-Bayesian Information Criterion (SBIC) are shown. To 
avoid underestimation since the SBIC tends to suggest the least 
number of optimal lags (Pesaran, Shin, and Smith 2001), three 
criteria particularly LR, FPE, and AIC chose 5, the optimal lag 
of 5 was selected and will be used for the Bayesian modeling 
purposes. 
 
Table 2: Selection of the optimal number of lags 

Lag LR FPE AIC HQIC SBIC 

0 -  99743.2000 25.6997 25.7148 25.7383 

1 6682.30 0.7320 13.8774 13.9678 14.1090 

2 731.79 0.2171 12.6621 12.8279 13.0866* 

3 75.690 0.2074 12.6163 12.8574 13.2337 

4 114.610 0.1849 12.5012 12.8176* 13.3115 

5 71.651* 0.1779* 12.4626* 12.8543 13.4659 

 
FVAR Framework  
An unrestricted VAR with p lags written as 𝑉𝐴𝑅(𝑝)  is a 
Seemingly Unrelated Regression model with similar regressors 
in every equation. In the works of Lutkepohl (2005) and Greene 
(2008), running a linear regression in every equation generates 
the MLE of the coefficients.  Thereafter, the estimates of 
coefficients can be calculated using the residuals which are 
eventually used in estimating the cross-equation residual 
variance-covariance matrix Σ (StataCorp 2021a).   
  
In addition,  Lutkepohl (2005), defines 𝑉𝐴𝑅(𝑝) with exogenous 
variables as 
  
𝑦! = 𝐴𝑌!"# +𝐵$𝑥! + 𝑢!"#     (1) 
 
where 𝑦! is the 𝐾 × 1 vector of endogenous variables, 𝐴 is the  
𝐾 ×𝐾𝑝 matrix of coefficients, 𝐵$ is the 𝐾 ×𝑀  matrix of 
coefficients, 𝑥! is the 𝑀× 1 vector of exogenous variables, 𝑢! 
is the 𝐾 × 1 vector of white noise innovations, and 𝑌!  is the 

𝐾𝑝 × 1  matrix given by 𝑌! = 8𝑦! …𝑦!"%&#:
'

. For easier 
manipulation, Equation 1 can be rewritten into 𝑌! = 𝐵𝑍 + 𝑈 
where 𝑌 = (𝑦#… , 𝑦() and is 𝐾 × 𝑇 , 𝐵 = (𝐴, 𝐵$) and is 𝐾 ×

(𝐾𝑝 +𝑀) , 𝑍 = 8)!,…,)"#$,$,…,,"
: and is (𝐾𝑝 +𝑀) × 𝑇 ; and 𝑈 =

(𝑥#, … , 𝑥!) and is 𝐾 × 𝑇. The constant terms in the model are 
incorporated in 𝑥! , and is empty whenever if there are no 
exogenous variables nor constant terms. Considering the error 
terms matrix denoted by 𝑈?  that is obtained through 𝑌 − 𝐵A𝑍 , 
where 𝐵A denotes the matrix of coefficients estimates, the 
estimator Σ  is ΣA = (𝑈?′𝑈?)/𝑇  where 𝑇 = 𝑇 is the default 
maximum likelihood divisor. Herein, the gamma matrix in the 
VAR framework that is stored in this process is given by 
∑ (1, 𝑌′((
!-# )E1, 𝑌′(F

'/𝑇  which is a (𝐾𝑝 × 1) × (𝐾𝑝 × 1) 
matrix (StataCorp 2021a). 
 
BVAR Framework  
Extending the 𝑉𝐴𝑅(𝑝) form from Equation 1 according to the 
works of Lutkepohl (2005; in StataCorp 2021b) provides 𝑦! =
𝐴#𝑦!"# +⋯+𝐴%𝑦!"% + 𝐶#𝑥! + 𝑢!; 𝑢!~𝑁(0, Σ) where, 𝐴. =
(𝑎/0. )  are unknown endogenous factors lag coefficients (𝑙 =
1,… , 𝑝)  which are 𝐾 ×𝐾  matrices, 𝐶 = (𝑎/1)  as exogenous 
factors that is a 𝐾 ×𝑚  matrix; and 𝑢!  is a 𝐾 × 1  vector of 
residuals with a 𝐾 ×𝐾 covariance matrix Σ*. In simplified form, 
the extended 𝑉𝐴𝑅(𝑝) can be expressed as  
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𝑌∗ = 𝑋𝐵 + 𝑉,       (2) 
 
compactly, where 𝑌∗ = 8𝑦'

#
…𝑦'

(
:
'
, 𝑋 =

P
𝑦′$𝑦′"# ⋯ 𝑦′#"%𝑥′#

. ⋮ .
𝑦′("#𝑦′("3 ⋯ 𝑦′("%𝑥′(

S ,𝐵 = (𝐴#…𝐴′%𝐶')′ , and 𝑉 =

(𝑢'#…𝑢
'
()′. A 𝑇 × 𝑘 matrix 𝑌,  a 𝑇 × (𝐾𝑝 +𝑀) matrix 𝑋, a 

(𝐾𝑝 +𝑀) × 𝐾 matrix 𝐵 of all coefficients, and a 𝑇 × 𝐾 matrix 
𝑉 are makes up the components of Equation 2. Moreover, the 
OLS estimates of 𝐵 and Σ are 𝐵A = (𝑋'𝑋)"#𝑋′𝑌 and  
 
Σ456 = 𝑉A′𝑉A/[𝑇 − (𝐾𝑝 +𝑚 + 1)], 𝑉A = 𝑌 − 𝑋𝐵A .    (3) 
 
In vector form, the matrix equation in Equation 3 can be 
expressed as 𝑦 = 𝑋∗𝛽 + 𝑣.. Here, 𝑦 is a 𝐾𝑇 × 1 vector while 
the 𝐾𝑇 × 𝐾(𝐾𝑝 +𝑀) -dimension matrix 𝑋∗ = 𝐼7⨂𝑋  applies 
the Kronecker product component signified by ⨂  that has a 
𝐾 ×𝐾  dimension (that is, 𝐼7 ), a 𝐾(𝐾𝑝 +𝑀) × 1  vector 𝛽 
representing all coefficients, and the residuals vector 𝑣  and 
covariance matrix Σ∗ = Σ⨂𝐼(   that has dimensions of 𝐾𝑇 × 1  
and  𝐾𝑇 × 𝐾𝑇, respectively (StataCorp 2021b). 
 
The specification of BVAR Model necessitates the distinction of 
an appropriate prior for the vector of coefficients 𝛽 . The 
Minnesota prior is selected in this study since using this prior 
enforces the hypothesis that each variable in the model follow a 
random walk process (Kuschnig and Vashold 2021; in StataCorp 
2021b). The variables in this study follow a random walk 
process given the application of moving average.  
 
Choice of Prior for the BVAR Model  
Early works on BVAR (Doan et al., 1984; Litterman 1986; in 
StataCorp 2021b) simplified the model prior through the 
assumption of fixed-error covariance matrix that is known. The 
estimated ΣA  replaces the covariance Σ  under the Multivariate 
Normal (MVN) likelihood. Typically, the Σ  of choice is a 
diagonal matrix of estimated variances produced by an 
Autoregressive (AR) Model that is run separately to each 
endogenous variable. The prior covariance for the coefficients 
of the exogenous factors is then generated from Σ as specified in 
the Original Minnesota prior with a known fixed prior error 
covariance. Since this paper intends to eventually propose a 
combination of methods that may generate more precise 
predictions, this will also adapt the Minnesota prior proposed by 
Litterman (1986) since linear regression based BVAR models 
typically use this prior, too (Ciccarelli and Rebucci 2003).  
 
The covariance matrix of the error vectors 𝑣!  is considered 
known, that is, Σ = Σ$  in the Original Minnesota prior in a 
BVAR system (Litterman 1980, 1986). As such, 
𝑣~𝑁(0, Σ$⨂𝐼(). The seminal version of this prior utilized a 
diagonal matrix that contains covariance of errors produced 
from distinct K number of AR models on covariance estimate 
diagonal given by Σ$ = ΣA8/9: = 𝑑𝑖𝑎𝑔(𝜎̂#3, … , 𝜎̂73) . The 
proposal of Litterman is to estimate the VAR model using the 
equation instead of a system of equations. In essence, the 
calculational cost is reduced which poses critical challenge 
during those years (StataCorp 2021b).  
The Minnesota prior for the vector of coefficient denoted by 𝛽 
is a prior that is MVN in nature and is given by 𝛽~𝑁(𝛽$, Ω$) 
where 𝛽$is a 𝐾𝑇 × 1vector whereas the matrix Ω$ is	𝐾𝑇 × 𝐾𝑇. 

These parameters are characterized in a manner that accounts for 
a 𝑉𝐴𝑅(𝑝) model that has a special time-series structure. This 
framework defines a regression vector of lag coefficients𝛽 , 
consisted of 𝑎/0.  (where	𝑙 = 1,… , 𝑝	and	𝑖, 𝑗 = 1,… ,𝐾)  and the 
coefficients 𝑐/1  (where	𝑖 = 1,… ,𝐾	and	𝑠 = 1,… ,𝑀)  of 
exogenous variables. The expected value of each coefficient is 
zero under the Minnesota prior assumption excluding the self-
variables first-lag coefficients that is given by 𝐸E𝑎/0. F = 𝛿#.𝛿#0  
and 𝐸(𝑐/1) = 0 where 𝛿#0 = 1 whenever 𝑖 = 𝑗 and 0 otherwise. 
Hence, the prior mean vector 𝛽$ vector of dimension 𝐾(𝐾𝑝 +
𝑀) × 1 takes values of either 0s or 1s. Here, the self-variables 
first-lag coefficients are all 1s (StataCorp 2021b).  
 
Metropolis Hastings Sampling under the Bayesian Inference 
For convenience, this paper will refer to the Metropolis-Hastings 
sampling in the Bayesian system as Bayesian Metropolis-
Hastings (BMH) algorithm. The BMH algorithm repeatedly 
samples from a probability distribution through simulation by 
using the full joint density function. Then, independent proposal 
distributions are generated for every variable of interest (Yildirm 
2012). 
 
Consider a vector of 𝑑 scalar model of parameters 𝜃. Consider 
also 𝑇$  to be the burn-in periods with 𝑇  being the MCMC 
iterations. The sum of all iterations is 𝑇!;! = 𝑇$ + (𝑇 − 1) ×
𝑡/ + 1 with 𝑡/ denoting the thinning interval that is customarily 
equal to 1. The BMH algorithm starts with initializing the 
sample value for every random variable which is typically 
sampled from the prior distribution of the variable. The 
algorithm follows a loop that generates a candidate sample at 
𝑡 = 0 with 𝜃$ = 𝜃$

<  setting up at 𝑘 − 1 adaptation counter with 
the initial feasible state 𝜃$

=  from the proposal distribution 𝜃∗ =
𝜃!"# + 𝑒, 𝑒~𝑁E0, 𝑝>3Σ>F; calculate the acceptance probability 
min	{[𝑝(𝜃∗|𝑦)/𝑝(𝜃!"#|𝑦)],1} = α(𝜃∗|𝜃!"#)	 with 𝑝 8𝜃v𝑦: =

𝑓 8𝑦v𝜃: 𝑝(𝜃) as the posterior distribution of 𝜃, corresponding to 
the likelihood function 𝑓(𝑦|𝜃)  and prior 𝑝(𝜃) ; and set the 
candidate sample to 𝜃! = 𝜃∗ whenever 𝑢 <
𝛼(𝜃∗|𝜃!"#), 𝑢~Uniform(0,1) is drawn, or 𝜃! = 𝜃!"#  (Yildirm 
2012; StataCorp 2021c). The most frequently applied BMH 
algorithm is the “Random-walk Metropolis-Hastings algorithm” 
(Yildirm 2012). This study will also use the same algorithm with 
respect to the intended purposes i.e., prediction.  
 
 
RESULTS and DISCUSSION 
 
The BVAR with Minnesota prior output restricted to the 
variables and lags contributory to the dependent variable is 
given in Table 2. Monte Carlo Markov Chain (MCMC) runs of 
12,500 samples having the first 2,500 simulations used as burn-
ins show the effects of predefined five lags of each regressor 
through the mean of coefficients. The model has a high average 
model efficiency of 99.27%. The prior variances were set to the 
customary default values seen in StataCorp (2021a). The 
standard deviation (SD), Monte Carlo Standard Error (MCSE), 
and 95% Credible Interval are also provided in Table 2. A set of 
dynamic predictions was generated for the BVAR Model. 
Separately, predictions for a Frequentist VAR model were also 
done for comparative purposes.  
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Table 3: Results of the BVAR Model with cases as the response variable 

Variable Lag Mean SD MCSE Median 95% Credible Interval 
LL UL 

Cases 

L1. 1.4445 0.0264 0.0003 1.4445 1.3931 1.4967 
L2. -0.3233 0.0364 0.0004 -0.3234 -0.3940 -0.2513 
L3. -0.1584 0.0265 0.0003 -0.1582 -0.2103 -0.1065 
L4. -0.0361 0.0200 0.0002 -0.0358 -0.0752 0.0028 
L5. 0.0306 0.0146 0.0001 0.0306 0.0015 0.0592 

Rainfall 

L1. 0.0003 0.0065 0.0001 0.0003 -0.0124 0.0131 
L2. <0.0001 0.0050 <0.0001 <0.0001 -0.0097 0.0096 
L3. -0.0009 0.0035 <0.0001 -0.0009 -0.0077 0.0060 
L4. -0.0005 0.0027 0.0000 -0.0005 -0.0058 0.0048 
L5. -0.0003 0.0022 0.0000 -0.0003 -0.0046 0.0040 

Tmax 

L1. -0.4373 0.2584 0.0026 -0.4360 -0.9441 0.0567 
L2. 0.0774 0.2129 0.0021 0.0789 -0.3433 0.4907 
L3. 0.0484 0.1487 0.0015 0.0500 -0.2481 0.3414 
L4. 0.0351 0.1118 0.0011 0.0348 -0.1855 0.2544 
L5. 0.0038 0.0891 0.0009 0.0045 -0.1731 0.1794 

Tmin 

L1. 0.4398 0.4840 0.0050 0.4412 -0.5111 1.3899 
L2. 0.2075 0.4279 0.0043 0.2066 -0.6347 1.0333 
L3. -0.1736 0.2993 0.0030 -0.1705 -0.7700 0.4072 
L4. -0.0183 0.2273 0.0023 -0.0209 -0.4544 0.4334 
L5. -0.0311 0.1814 0.0018 -0.0312 -0.3815 0.3314 

Humid 

L1. 0.0282 0.0842 0.0008 0.0287 -0.1390 0.1914 
L2. -0.0052 0.0732 0.0007 -0.0048 -0.1495 0.1385 
L3. -0.0233 0.0503 0.0005 -0.0237 -0.1212 0.0747 
L4. -0.0051 0.0394 0.0004 -0.0051 -0.0820 0.0719 
L5. -0.0014 0.0313 0.0003 -0.0019 -0.0616 0.0601 

The stability of the BVAR is shown in Table 3. The probability 
that the eigenvalues are found inside the unit circle is 50.71%. 
As reported, the posterior summaries for the eigenvalue moduli 
lie inside the unit circle as all the mean values are below 1 and 
therefore, the BVAR model is deemed stable. 
 

  
 
 

 
Table 4: Stability of the BVAR Model 

Eigenvalue  
Modulus Mean SD MCSE Median 95% Credible Interval 

LL UL 
1 ~1.000 0.0004 <0.0001 ~1.000 0.9991 1.0008 
2 0.8976 0.0222 0.0002 0.8976 0.8551 0.9421 
3 0.8791 0.0236 0.0002 0.8804 0.8295 0.9207 
4 0.8510 0.0278 0.0003 0.8519 0.7952 0.9011 
5 0.8157 0.0286 0.0003 0.8163 0.7574 0.8687 
6 0.7939 0.0270 0.0003 0.7952 0.7382 0.8434 
7 0.7671 0.0326 0.0003 0.7694 0.6942 0.8230 
8 0.7400 0.0393 0.0004 0.7449 0.6482 0.8032 
9 0.6808 0.0680 0.0007 0.6909 0.5447 0.7850 
10 0.5519 0.0695 0.0007 0.5535 0.4300 0.6829 
11 0.4664 0.0388 0.0004 0.4608 0.4044 0.5646 
12 0.4487 0.0268 0.0003 0.4488 0.3952 0.5025 
13 0.4316 0.0264 0.0003 0.4317 0.3803 0.4849 
14 0.4188 0.0245 0.0002 0.4191 0.3698 0.4660 
15 0.4087 0.0244 0.0002 0.4093 0.3596 0.4551 
16 0.3965 0.0250 0.0003 0.3974 0.3459 0.4430 
17 0.3863 0.0249 0.0002 0.3872 0.3360 0.4331 
18 0.3762 0.0259 0.0003 0.3774 0.3222 0.4237 
19 0.3637 0.0278 0.0003 0.3652 0.3061 0.4146 
20 0.3526 0.0289 0.0003 0.3541 0.2920 0.4050 
21 0.3395 0.0330 0.0003 0.3426 0.2666 0.3961 
22 0.3209 0.0380 0.0004 0.3242 0.2359 0.3847 
23 0.3017 0.0439 0.0004 0.3066 0.1995 0.3720 
24 0.2731 0.0600 0.0006 0.2837 0.1243 0.3623 
25 0.1955 0.0929 0.0009 0.2100 0.0122 0.3406 

Now the sensitivity of the moving average of the reported cases 
to the regressors is not clearly identifiable in Table 2. Thus, 
graphs for visual assessment are provided. The graphs of 
Impulse Response Function (IRF), Orthogonalized IRF (OIRF), 
and Cumulative OIRF (COIRF) are provided in Figure 3. An 

IRF is typically utilized for a quick visual summarization of a 
VAR Model. The IRF shows how a shock in a regressor also 
known as impulse variable influences the response variable. 
However, the non-independence or impulse variables is not 
accounted for in an ordinary IRF. The dynamics between the 
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regressors are shown by an OIRF. An alternative method, 
moreover, is to present the dynamics in the accumulated effects 
of the shocks over time (StataCorp, 2021a). Hence, the Forecast 
Error Variance Decomposition (FEVD) assesses the 

contribution of the variability of the shocks in the regressors to 
the predictive errors in the response variable (StataCorp, 2021a) 
was included. 
 

 
Figure 3: IRF, OIRF, COIRF, and FEVD graphs of the BVAR Model

As shown in Figure 3, the IRF, OIRF, and COIRF graphs, only 
the shocks in the lags of the moving averages of the cases itself 
and rainfall, consistently, have influential effects on the response 
variable. On the other hand, the FEVD reveals that only the lags 
in the response variable itself have long-term impacts on its 
predictive errors as the other regressors appear to have 
negligible effects. Hence, each of the first, second, third, fourth, 
and fifth lags of the moving averages of the reported totals of 

dengue cases as well as of the rainfall, were generated. These 
eight variables were used in a separate model using an MNMN 
Bayesian MH Algorithm with inverse-gamma hyperprior 
distribution. Table 5 shows the results of the Bayesian MH 
Algorithm using Gibbs Sampling employing the Laplace-
Metropolis estimator. 
 

Table 5: Coefficients of the Bayesian MH model 

Regressor Mean SD MCSE Median 95% Credible Interval 
LL UL 

First lag of cases 1.7166 0.0423 0.0013 1.7176 1.6325 1.7994 
Second lag of cases -0.6642 0.0847 0.0027 -0.6641 -0.8225 -0.4961 
Third lag of cases -0.1705 0.0892 0.0027 -0.1714 -0.3478 -0.0009 
Fourth lag of cases -0.0189 0.0869 0.0028 -0.0154 -0.1986 0.1584 
Fifth lag of cases 0.1122 0.0429 0.0013 0.1094 0.0264 0.1969 

First lag of rainfall 0.0090 0.0090 0.0003 0.0090 -0.0090 0.0268 
Second lag of rainfall 0.0045 0.0142 0.0004 0.0047 -0.0231 0.0329 
Third lag of rainfall -0.0086 0.0150 0.0004 -0.0082 -0.0381 0.0197 
Fourth lag of rainfall -0.0011 0.0143 0.0005 -0.0009 -0.0284 0.0276 
Fifth lag of rainfall 0.0053 0.0094 0.0003 0.0053 -0.0131 0.0243 

Variance Parameter 7.3802 0.4382 0.0139 7.3671 6.5613 8.2618 

Table 5 shows that for the moving averages of reported dengue 
cases, the first and fifth lags could increase the moving average 
of the present number of cases while the other lags could 
decrease. On the other hand, the first, second, and fifth lags of 
the rainfall could increase the response variable, while the others 

could decrease it. This estimation has an average efficiency of 
99.89% that is closer to 1, with the mean of the variance 
parameter at 7.3802, which is fairly acceptable for the linear 
combination of the variables. 
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Figure 4: Diagnostics of the Bayesian MH Model

In Figure 4, the trace plots show good coverage of the marginal 
distribution. The histogram and kernel density plots take the 
shape of the expected inverse-gamma distribution, and the 
autocorrelation plot gives no specific pattern signifying 
anomalies. Therefore, the variance parameter has no apparent 
problems based on the visualizations provided. 
 
Table 6 shows the 24-point prediction of each of the three 
models against the actual out-of-sample moving average of 

reported dengue cases test set from Butuan City. The Root Mean 
Squared Error (RMSE) was used to determine the most accurate 
predictive model among the three. This measure of predictive 
accuracy for 𝑟 = 1,2, , … , 𝑅 test set entries is given by 𝑅𝑀𝑆𝐸 =
�Σ?-#@ 𝑀𝑆𝐸?  where 𝑀𝑆𝐸 = (𝐴? − 𝑃?)3   in which, 𝐴?  and  𝑃? 
respectively, denotes the actual value, and predicted value of 
each model. 
 

Table 6: Prediction from each model compared to the reported cases 
Week Period Cases BVAR-BMH BVAR VAR BMH 

Number Prediction MSE Prediction MSE Prediction MSE Prediction MSE 
1 2020w27 9.4 8.95 0.20 8.90 0.25 8.17 1.50 19.68 105.70 
2 2020w28 8.6 9.88 1.65 9.02 0.17 7.75 0.72 18.00 88.36 
3 2020w29 8.8 8.18 0.38 9.32 0.27 8.5 0.09 19.33 110.79 
4 2020w30 7.4 9.2 3.25 9.89 6.22 9.54 4.59 20.18 163.23 
5 2020w31 6.8 6.67 0.02 10.59 14.34 10.94 17.17 21.52 216.73 
6 2020w32 6 6.49 0.24 11.39 29.05 12.31 39.77 22.39 268.64 
7 2020w33 6.2 5.64 0.32 12.22 36.23 13.47 52.85 20.66 209.22 
8 2020w34 5.8 6.97 1.36 13.03 52.34 14.34 72.87 19.83 196.72 
9 2020w35 4.8 6.19 1.93 13.88 82.37 14.96 103.21 17.94 172.70 

10 2020w36 5 4.52 0.23 14.61 92.42 15.34 106.87 17.73 162.01 
11 2020w37 3.6 5.27 2.78 15.29 136.74 15.59 143.69 16.79 173.89 
12 2020w38 2.2 3.09 0.80 15.91 187.96 15.77 184.15 21.19 360.61 
13 2020w39 1.8 1.46 0.11 16.41 213.48 15.94 200.01 20.53 350.64 
14 2020w40 2 1.49 0.26 16.85 220.47 16.14 199.94 21.48 379.41 
15 2020w41 0.8 2.88 4.32 17.18 268.42 16.38 242.65 21.48 427.49 
16 2020w42 0.8 0.84 0.00 17.45 277.28 16.64 250.93 20.43 385.40 
17 2020w43 0.6 1.10 0.25 17.7 292.56 16.92 266.29 20.98 415.44 
18 2020w44 0.2 0.85 0.43 17.96 315.35 17.19 288.61 20.52 412.73 
19 2020w45 0.2 0.53 0.11 18.14 321.69 17.43 296.95 19.02 354.30 
20 2020w46 0.2 0.95 0.56 18.24 325.35 17.64 304.03 18.48 334.30 
21 2020w47 0.4 1.14 0.55 18.30 320.5 17.79 302.58 19.41 361.27 
22 2020w48 0.4 1.25 0.72 18.26 318.97 17.91 306.46 20.19 391.84 
23 2020w49 0.6 0.77 0.03 18.22 310.45 17.97 301.87 20.94 413.67 
24 2020w50 0.6 1.20 0.36 18.18 309.21 18.01 303.04 22.96 500.15 
      RMSE 4.57 RMSE 64.28 RMSE 63.17 RMSE 83.40 
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As seen in Table 6, the BMH Algorithm, where the regressors 
plugged in were empirically proven by the BVAR Model, 
hereinafter referred to as BVAR-BMH to have inferential 
impacts on the current moving average of the number of reported 
cases in Butuan City, has the least RMSE at 4.57. It is followed 
by the RMSE of FVAR at 63.17 while the RMSE of the BVAR 
is at 64.28. The highest RMSE was obtained through BMH alone 

using the original set of regressors. Thus, the attempted 
calibration of prediction via the BVAR-BMH combination 
showed promising gains in accuracy. Figure 5 presents the 
visualization of the predictions generated from the four methods 
against the reported number of cases. On the other hand, 
Appendix 1 was also provided to visualize to comparison of 
predictive accuracies.  

 
Figure 5: Comparison of the predictions from the four models

This paper, in addition, caters to a few summaries given by 
Leung et al. (2023) in relation to dengue outbreak modeling 
works by other authors.  This study (1) adhered to using climate 
factors, (2) plugged in the effects of lags and provided inferential 
proof of their inclusion, (3) deviated from some studies applying 
machine learning algorithms  i.e., implementing two methods in 
Bayesian econometrics, (4) being consistent with implementing 
regression-based modeling, (5) applying autoregressive 
technique, and (6) including a validation report such as the one 
visualized in Figure 5 to determine if gains in predictive 
accuracy were obtained.  
 
The results further provide useful and could possibly be a piece 
of critical jumpstart information on possible uses of the 
Bayesian framework in modeling epidemiological data in the 
context of a changing climate. Hobbs (1997) stated that 
predictions and updates about climate change can be made using 
Bayesian analysis. Moreover, using traditional frequentist 
approaches as baseline modes may provide predictions that are 
too far from the actual data. Appendix 2 visualizes the graphs of 
(1) the Poisson Autoregressive Model (PAR Pred) with 4 lags 
which has an R-squared of less than 70% and RMSE of 15.82 
but may be less sensitive to shocks in any of the variables, and 
(2) OLS Model with an R-Squared of less than 15%, no added 
lags, and RMSE of 123.11. 
 
This study also shows empirically that at least for Butuan City, 
increases in the reported cases of dengue are primarily sensitive 
only to the sudden spikes in the number of cases themselves, and 
total rainfall from specific number of weeks prior. Such results 
could be crucial for further spatiotemporal studies. Specifically, 
while this paper supports the use of meteorological parameters 
including rainfall, the results suggests that the pattern of 
increased dengue cases in the selected study setting digresses 
from the common knowledge based on literature that 
temperature and humidity (Hii et al. 2009; Souza, Silva, and 
Silva 2010; Hales et al. 2002; Russel et al. 2009; Van Kleef, 
Bambrick, and Hales 2011) could increase dengue transmission 
in general.  
 
 
  

CONCLUSION AND RECOMMENDATIONS 
 
This study modeled the high frequency weekly aggregated 
moving average of dengue surveillance data from Butuan City 
using meteorological parameters as regressors. Necessarily, the 
BVAR Model was applied, and a stable model was produced. 
The first five lags for each of the response variable and total 
rainfall were generated to run an independent BMH Model with 
certain specifications. Simulation shows that gains in predictive 
accuracy in the introduced BVAR-BMH econometric 
procedures are encouraging. 
 
The findings in the study provide crucial insights on (1) using 
high-frequency data as an alternative in the absence of long-term 
data for modeling whenever possible, (2) the advantages in 
accounting for possible effects of lags in epidemiological 
surveillance, and (3) using Bayesian approaches, specifically a 
combination thereof, in drawing inferences in the lens of 
modeling dengue, may produce calibrated predictions. The 
results of the proposed spatiotemporal model for the study set 
also show that the changes in the response variable could be 
mostly sensitive to both the past five reporting weeks of the 
cases and rainfall totals. Particularly, the results of the BVAR 
Models in Table 3 show that the present value of the dependent 
variable may be primarily affected by the sudden rise in the cases 
from one week prior and the increase in total rainfall from the 
past two weeks. It is therefore recommended that the dengue 
surveillance in the location be more stringent, especially after 
heavy rainfall, typhoons, and expected increases in rainfall 
amount during wet seasons. This can be valuable information, 
further, given that in the context of a changing climate, the 
variability in the spread of vector-borne diseases including 
dengue, and the unpredictability of the amount of rainfall or the 
lack of such posits major uncertainties and concerns. It is also 
strongly recommended that regressors and lags selection 
procedure be included in modeling epidemiological data when 
using meteorological parameters. The results may also be used 
by the local government of Butuan City, and others, in 
developing a localized early warning system for the surveillance 
of dengue in the said location. Lastly, statisticians and experts 
may develop statistical packages for free and trusted software 
for ease of the proposed modeling procedure. 
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Appendix 1: Comparison of the MSE from the four methods. 

 

 
Appendix 2: Comparison of the predictions from customary frequentist model

 
 


